IntvWin

Windows Version of IntvDOS

Version 1.1

Users Manual

John Dullea

March, 2002

johnpcae@yahoo.com

Contents

40 For users of PCAE

1 What is INTVWIN?
5
System Requirements
5
Features
5
2 Setting It Up
7
Installing the Software
7
Setting Up Folders
7
Setting Preferences
7
Setting Custom Colors
8
Setting Up Controllers (Interfaces and Capabilities)
8
3 Playing Games
10
The Command Line
10
The Main Window
10
The Game Menu
10
Menu hot keys
10
The Alternate Game Menu
11
Other Main Menu Items
11
The Game Profile File
11
When the Game Is Running
12
ECS Keyboard Support
13
ECS Cassette Support
13
ECS Printer Support
14
Importing a Text-File ECS Basic Program
14
4 Development Tools
15
Debugger Layout
15
Entering one or more bytes (or words) of data
16
Changing a CPU register’s contents
16
Entering a CP1600 instruction
16
Saving to Disk
17
Breaking On an Equation/Expression
17
The Disassembler
18
5 Troubleshooting
19
None of my games run
19
My games run, but I don’t hear any voice for Intellivoice games
19
The emulator runs VERY slowly
19
The emulator runs more slowly when I use joysticks than when I use the keyboard
19
The emulator runs much slower than the DOS version
19
The emulator runs, but there is no sound
20
The emulator runs too fast; games are unplayable
20
The menu doesn’t show any games to run
20
The emulator works on one computer, but one of the above problems arises when I copy it to another machine
20
When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately
21
One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen
21
I get an error message saying that a file is missing
21
My game controller doesn’t work or isn’t detected
21
I want to start a network game using Kaillera. What do I do?
21
6 Acknowledgements
23
7 Disclaimer
25

0 For users of PCAE

If you are familiar with PCAE, the PC Atari emulator, then you should be able to skim most of this document. Many of IntvWin’s features and internals are based on PCAE, and the emulator is set up in exactly the same way. Major differences from PCAE include the following:

· IntvWin is an Intellivision emulator, of course!

· Some changes and enhancements to the integrated debugger, due to differences between Intellivision and Intellivision platforms.

· Somewhat different format of the INTVWIN.PRO file.

· IntvWin is not a standalone emulator—it REQUIRES Carl Mueller’s IntvPC emulator from the Intellivision Lives! CD (and other file(s) for IntelliVoice and Keyboard Component emulation).

1 What is INTVWIN?

INTVWIN is a 32-bit Microsoft Windows program designed to emulate the famous Mattel Intellivision on PC’s compatible with the Intel 80486 CPU or better. It accomplishes this with an emulation engine that is written almost entirely in assembly language, with extra features written in Borland Delphi 5.0.

System Requirements

OS:
Microsoft Windows 95, 98, NT, or 2000, using DirectX 5.

CPU:
Intel 80486 or greater, for the BSWAP instruction (though a Pentium-160 or greater is highly recommended for performance purposes)

RAM:
32Mb or greater recommended

Other:
A 4-button joystick is strongly recommended, ESPECIALLY a Gravis GamePad or Gravis GrIP controller. Two joysticks are strongly recommended for two-player games To use joysticks to emulate paddles two and three, analog joysticks are required.

Sound:
Any sound card that conforms to DirectSound.

Features

· Based on PCAEWin.

· Very fast emulation due to the Pentium-optimized assembly implementation

· Full collision checking

· Emulates the Entertainment Computer System and up to four controllers

· Emulates the original Intellivision Keyboard Component (but not the cassette and printer interfaces yet).

· Support for two joysticks (four-button joysticks can control select, reset, and both players' fire buttons in all games)

· Built-in menu allows easy selection of games

· Support for a game profile file that contains all the cartridge types and memory settings for every game in your library

· On-line help is available in the menu system, integrated debugger, and while playing games

· Built in dual interactive debuggers for Master Component CP1600 and Keyboard Component 6502 chips

· Emulation speed can be slowed down to a user-selectable number of frames per second for especially fast computers

· Ability to capture the screen to either Windows .BMP or JPEG (.JPG) files

· Games can be highlighted by game type, alphabetically, or by alternating rows

· Game menu colors can be changed for alternating modes

· Debuggers support breakpoint on symbolic equation

· Cp1600 debugger allows entering a CP1600 instruction by name into emulated memory

· Emulator settings saved to industry-standard .INI file

· Mouse, keyboard, controller, and Intv2PC functions can be mapped to virtually any Intellivision function

· Quicksave/quickload game save states

· Ability to also load a quicksave game state by name, that is type in a filename

· Import ECS Basic programs as text file (emulator “types in” the file)

· ECS cassette support (program is either loaded from a file or saved to a file in “native” ECS format)

· ECS printer support (program is printed to text file)

· Allows recording of the video stream to an .AVI movie file.

· Intellivoice emulation (requires separate 2k Intellivoice ROM file IVOICE.BIN—not distributed with IntvWin).
· Supports up to two Intv2PC hand controller interfaces, allowing emulation of four-player ECS games. Each hand controller interface must be connected to its own parallel port.
· Menu selection window can display scans of the front, side, and back of game boxes, as well as cartridge scans.
· User can display a game’s manual in either plain text (.TXT) or rich text (.RTF) format.

· Game selection window can display game screen shots in either .BMP or .JPG format.

· Fixed support for certain Imagic games
· Greatly improved the sound emulation
· Added an FPS counter that can be turned on or off from the Preferences screen.
· Added a button to the main toolbar to display the game's manual, if one is available.
· Added ZIP file support (note that using ZIP files is noticeably slower than not using them, and is not recommended for things like screen shots and scans)
· Added Kaillera net-play support. Using this will open up emulation in a separate pop-up window. Players can chat among one another by hitting the slash key and typing chat text.
· Improved windowed zoom mode; it now better supports DirectX zooming for more speed, and now includes 3x and full-screen zoom in addition to 2x and 4x. Zoom modes are also remembered by the program and restored on startup. When zooming to the full size of the screen, there is an option in Preferences for hiding the Windows taskbar.
· Added support for Chad Schell's Intellicart format. Files supporting this format MUST have the extenson .ROM.
· Fixed the bug that caused a long delay when switching video modes to full screen mode
· Fixed the bug where the menu did not properly indicate whether the Intv2PC interface was enabled
· Fixed the bug where the emulator would crash if sound was disabled
· Added extremely basic "vestigial" Intellivoice support that allows games to send their own voice data to the Intellivoice emulation engine. This does NOT include any of the "canned" copyrighted Invellivoice data. As such there is NO guarantee that preexisting Intellivoice games will be playable.
· Added support for overlay scans. When running in windowed mode, the emulator automatically displays the overlay scan to the right of the emulation window.
· Made the interface configuration screen friendly to 800x600 resolutions.
· Added a menu command to save video to an .AVI file.
· Changed the game manual interface so that it uses Internet Explorer. This means that it can read files that you can open in your browser, for example a PDF file if you have the appropriate plug-in.
2 Setting It Up

Installing the Software

Most likely you will acquire the emulator via a ZIP archive file that was either downloaded from somewhere or placed on a CD-ROM. The first thing to do is to create a new directory in which to place all the files contained in the archive file. For example, DOS users would type:

C> CD\

(move to the root directory

C> MD INTVWIN

(create the new directory

C> CD\INTVWIN

(move to the new directory

The next thing to do is to place all the files in the archive file into the new directory. There are a number of programs available for extracting a ZIP file, such as PKWare’s PKUNZIP for MS-DOS, or the shareware WINZIP for MS-Windows. Symantec’s Norton Navigator File Manager for Windows 95 is also a good choice. Using whichever method you choose, extract all the files contained in the ZIP archive into the new directory you just created.

Setting Up Folders

The first step after running INTVWIN is to set up the folders it uses. There are four folder settings:

· Game (ROM) folder

· Screen shot folder

· Front-of-box scan folder

· Side-of-box scan folder

· Back-of-box scan folder

· Cart scan folder

· Game manual folder

These folders must be different. Screen shots, box scans, and cart scans are displayed when one right-clicks on a game name in the game selection menu. The names of screen shots, box scans, and cart scans should match the filename of the game (ROM) file, with only the extension being different. INTVWIN supports Windows BMP and JPEG files. Folders are set in the preferences section, which can be accessed either from the main menu or the toolbar.

Setting Preferences

At this point it is a good idea to set all of your other preferences. Available options include:

· Menu color scheme

· Menu display scheme

· Menu colors (for all display schemes except “game type”)

· Folders (discussed above)

· Auto-centering (off by default)

· Frame rate (60 fps by default)

· Game menu font

· Debugger/configuration menus font (Courier recommended)

· Emulate sound

A detailed description of some options lies below.

Auto-Centering
Toggle automatic vertical auto-centering (off by default)

File list color scheme
Highlight game files by game type, alphabetically, or alternate colors every 3, 4, 5, or 6 rows

File list display scheme
Display game files by: name + extension + 2, 3, or 4 spaces; name only + 2, 3, or 4 spaces; real title (flush left); or real title (centered)

Set frames per second
Limit the emulator to display a specific number of frames per second (e.g. 60 fps)

Alternate game menu
Use an alternate game menu instead of the standard one. The alternate game menu has more functionality but displays games in a vertical format.

Use default game size
Automatically switch the window size/resolution to match the best resolution for a particular game. The resolution information for each game is stored in the profile file and can be modified in the Profile Settings dialog.

Realistic Pitfall II music
Attempts to re-create the “muddy” sound of Pitfall II music as heard on televisions by rounding off the corners of the square-wave music (on by default)

Setting Custom Colors

If you choose an alternating color scheme, you can change the foreground and background components of the two alternating colors. You can select any color that you can display in Windows for the four colors.

Setting Up Controllers (Interfaces and Capabilities)

Note to users of the MS-DOS version: the Interfaces… submenu from the main menu allows you to configure interfaces and capabilities in a somewhat similar manner to the DOS version, but using a unified window that makes all controller mappings accessible from one place.

Once setting your general preferences, the next step is to configure your interfaces. Interfaces are physical means by which you interface with your computer. Your mouse, keyboard, joystick, gamepad, etc. are all examples of interfaces. You have to tell INTVWIN how those interfaces will be translated to Intellivision functions. An example of configuring an interface would setting which keyboard key corresponds to the fire button on joystick 1. You can remap nearly every key on your keyboard, map mouse buttons, map mouse axes, or map just about any function of your game controller to an Intellivision function.

You configure interfaces by selecting Interfaces… Configure… from the main menu. The configuration window will appear. It is divided into two sections, the top half allowing you to select interfaces on your PC and the bottom half allowing you to map those interfaces to Intellivision functions. Along the top of the window are four tabs: keyboard, Mouse, Digital, and Intv2PC. “Digital” refers to any game controller you may have connected, whether it is an analog joystick, gamepad, or other controller. “Intv2PC” refers to the Intv2PC Hand Controller Interface. Selecting a tab displays a pane that is specific to that interface. They Keyboard tab displays a representation of a standard Windows keyboard, the Mouse tab displays several choices relating to a mouse, and the Digital tab checks what controllers you have connected to your PC and displays choices appropriate to them. The Intv2PC tab displays all possible parallel ports and lets you select which ports have Intv2PC interfaces connected to them (and to which Intellivision controllers they refer).

Once you have selected an interface to configure, you then map its capabilities to Intellivision functions. Capabilities are those features that are particular to a given device. For example, a particular game controller has a certain number of buttons, analog axes, digital axes, etc. Mice have up to three buttons and two movement axes, and keyboards have (of course) all of their keys. For your device, select which capability you want to configure and decide what Intellivision function you wish it to map to. For example, button 5 of your game pad could be simultaneously mapped to the lower left side button of controllers 1 and 2. This illustrates the point that a given capability can be mapped to multiple Intellivision functions. Most functions will have some sort of indication showing that they are mapped to something (a highlighted background for example).

You map a capability by selecting that capability and then clicking on one or more Intellivision functions below. For example, to map the “F” key on the keyboard to the lower left side button of controller 1, you would:

· Select the Keyboard interface tab

· Select the “F” key on the keyboard by clicking on it

· Click on “Side left” in the controller 1 column in the bottom window.

Assigned Intellivision functions will be highlighted in the bottom window. You can un-select an Intellivision function by clicking on it again. Also, some functions can only be used in sets. For example, if you want to map a joystick’s movement axis to a disc’s movement axis, multiple functions for the controller’s movement will be selected simultaneously. INTVWIN is somewhat smart in that it knows when certain capabilities require more than one Intellivision function.

When mapping game controller capabilities, INTVWIN simply numbers each capability. For example, if your gamepad has 10 buttons, INTVWIN will number each button from one to ten. For each capability (whether it be a button, hat, axis, or whatever), you can determine which one it is by manipulating it. For example, pressing a button when you are looking at the button list for your controller results in a red dot showing that that button has been depressed. Moving an axis or hat will display a slightly moving red dot that shows which axis or hat is being moved. Pressing a key on your keyboard will cause a small red dot to appear in that key’s representation on the screen. In that way you can visually determine with which capabilities you are dealing.

Once you have configured your interfaces, the final step is to enable them. INTVWIN uses a hierarchical order for interfaces; “Intv2PC” takes highest priority, then “Digital”, then “Keyboard”, and finally “Mouse”. This means that, for example, if a game controller button (“Digital” interface) is mapped to a particular Intellivision function, and a keyboard key (“Keyboard” interface) is mapped to the same function, and both interfaces are enabled, the keyboard key will have no effect. This is necessary to eliminate conflicts between interfaces. In the above example, disabling the Digital interface would allow the Keyboard interface to take over. However, you can have keyboard keys mapped to Intellivision functions that aren’t mapped in the Digital interface, and they will function. You can enable and disable interfaces at will without affecting the interface’s configuration (i.e. it won’t be lost).

3 Playing Games

Once the software has been set up and the sound card is configured properly, you are ready to try the emulator with any games that you own. INTVWIN requires that all games have extensions of .BIN.

The Command Line

INTVWIN only supports one command line argument, an optional game path:

INTVWIN [path]

path
path to a .BIN game directory, e.g. C:\CARTS

Some examples of command line usage are:

C> INTVWIN D:
C> INTVWIN D:\GAMES
Generally it is cumbersome for most users to use the command line in any but the first example unless writing shortcuts to individual games or writing a game shell.

The Main Window

The main window is where games will be displayed when run. There is a toolbar that allows you to open a game file, set preferences, start emulation, stop emulation, reset cartridge (equivalent to turning power off and on), control the Intellivision console switches, and record video to a compressed .AVI file. From the main menu you can also perform the same functions, as well as configure interfaces, enable interfaces, and select the video mode.

The Game Menu

The menu consists of a text display showing all the .BIN files detected in the directory. They will normally be displayed in a single color:

gray
all games

Files can be selected by using the cursor keys or the mouse to move the highlight bar to the desired file. The file size at the bottom will change to reflect the selected file.

Right-clicking on a particular game will display a pop-up information window that displays a screen shot, box scans, and cartridge scan if they are found in their respective folders (see chapter 2 for setting them up). Clicking anywhere on the window closes it, but you don’t have to close it to right-click on another game to view its information. Closing the game menu automatically closes the information window. There is also a button that lets you display a game’s manual in a pop-up window if it is present. Game manuals can be either plain text (.TXT) or rich text (.RTF) files.

Menu hot keys

There are two hot keys in the main menu of note:

Enter
Run game, using settings in profile file. If no setting is available, treat game as “normal” Intellivision game (e.g. Poker & Blackjack)

“E”
Emulate in ECS mode. Acts as if a cartridge is plugged into an ECS. Not necessary if ECS mode is specified in the profile file.

“K”
Emulate in Keyboard Component mode. Acts as if you have your Intellivision Master Component plugged into a Keyboard Component.

The Alternate Game Menu

In the Preferences dialog you have the option of selecting an alternate game menu to use instead of the standard one. It displays games in a vertical format, listing the name, type, manufacturer, year, default size, and controller type. At the right of the window any screen shots, cart scans, and box scans are displayed for the currently highlighted game, and there is a column showing if any of these “extras” are available. Also, right-clicking on a game will open up the profile settings dialog for modification of a game’s profile parameters. You can sort by any of the categories listed by clicking on the tabs at the top of the window, and each column can be resized by dragging the column boundary. INTVWIN will remember the column sizes, sorting method, and window state. You can toggle between ascending and descending sorts by clicking on a sort tab again. A button is displayed in the upper right corner that will pop-up the game’s manual if present.

Other Main Menu Items

In addition to general configuration, there are other main menu items used by INTVWIN. These involve rebuilding the profile file and controller settings for games that aren’t listed in the profile file. A description of the available functions is as follows:

Rebuild game profile
Automatically generate INTVWIN.PRO, the game profile file

Profile settings
Change profile settings for a game that has been loaded

Load game
Load save game from disk

Save game
Save game to disk

Save screen shot
Save a screen shot either to a JPEG or Windows BMP file. INTVWIN defaults to the screen shot folder and automatically chooses a file name matching the game file name (e.g. ATLANTIS.BIN (ATLANTIS.JPG).

Use debugger
Displays the dual built-in interactive debuggers

Disassemble
Generate assembly disassembly of game file

Video
Select full-screen or windowed mode, reolution (useful for PAL and nonstandard NTSC games), and full-screen type

Note that the above controller settings are completely ignored if the game is listed in the profile file. Also, when changing profile settings for a particular game, those changes may not be saved to disk until the emulator has been exited.

Please note that save files contain most of the emulator’s memory contents, including the data stored in its game space. This means that save files will generally contain the same information as a game file, and should be treated the same as game files for copyright purposes.

The Game Profile File

The game profile file, INTVWIN.PRO, is a text file the emulator uses that contains the game type, game memory layout, and title for each file in the game directory.

Each line of text in the known game profile file can be either a valid game reference, a remark, or a blank line. Valid game reference lines should contain the filename of a particular game, one or more spaces, a two-letter code describing the game type, one or more spaces, the game title (in double quotes), one or more spaces, and the memory layout information. The memory layout information is defined by using the string “MEM=” and a series of letters and numbers denoting the memory regions into which the game should be loaded. For example, if a particular game must be loaded into regions 5000h-5FFFh, 6000-6FFFh, and A000-AFFFh, then the string should read MEM=56A. Game titles must not themselves contain double quotes. Remarks are not allowed on valid game reference lines. All remark lines should begin with a semicolon (;) as the first character (no leading spaces). The two-letter codes describing game types must be from the following list:

Starts at 4800h (some Imagic games)
C4

ECS game
EC

Any other type
C5

After the title, each line can contain information about the game’s manufacturer, year it was made, and default resolution, in that order. Each piece of information must be delimited by the following strings:

Manufacturer
MN[manufacturer]MN

Year
YR[year]YR

Default height in pixels
DS[size]DS

For example, a line could read:

/ATLANTIS.BIN/ C4 "Atlantis" MN[Imagic]MN YR[1982]YR MEM=456

Note that the “MEM=” string shows into which memory banks the game is to be loaded. This cannot be set from within the emulator; if you add a new game, you will have to change this line manually.

When the Game Is Running

Once the game is visible, IntvWin is actually emulating the game code in the file. Since your PC doesn’t have the Power and Reset switches on the Intellivision console, the emulator maps certain function keys to those switches. Just like on the actual console, you start by interacting with the game just as you would with a real Intellivision—but with the function keys instead of switches. The function key assignments are as follows:

F2
Quicksave

F4
Quickload

F7
Import ECS basic program (text file)

F8
Load named quicksave game

F9
Capture screen to Windows .BMP file

F10
Reset (like the reset button on the real console)

F11
Record video stream to .AVI movie file

F12
Toggle slowdown

Esc
Pause game (i.e. Power) and return to windowed screen

Detailed description of function keys:

F2
Quicksaves the game to a file xxxxx.GMS, where xxxxx is the name of the .BIN game file. It ATTEMPTS to save the game in the same format as Carl Mueller’s IntvPC emulator, but the format of this file is not completely understood and there is no guarantee that IntvPC will be able to properly read the quicksave file.

F4
Quickloads the game save state from xxxxx.GMS (see F2 for description).

F7
Prompts the user for a filename (e.g. CHAOS.BAS). Imports the file into the emulated ECS by entering the text as if the user was typing it in. Emulator slowdown (i.e. slowing the emulator down to actual Intellivision speeds) is temporarily disabled to allow the program to be input as quickly as possible.

F8
Quickloads a game save state, like F4, but prompts the user for a save state file name first.

F9
Prompts the user for a filename for capturing the screen. It saves the screen as a 256-color Windows .BMP file (320x200x256).

F10
Resets the cartridge as if the “Reset” button were pressed on the Intellivision console.

F11
Save video stream to .AVI movie file. Can be turned off by hitting F11 again or hitting Esc to exit the game.

F12
Turns emulator slowdown on or off. Turning it off would cause the emulator to run as fast as possible, and could result in some games being unplayable on especially fast machines. This may be useful for running ECS Basic programs where greater speed is desired.

ECS Keyboard Support

IntvWin supports emulation of the ECS keyboard through the PC keyboard. When a key is pressed when in ECS mode, the emulator attempts to determine the corresponding ECS keyboard key and “inputs” that key if a match is found. If a key is mapped to controller or console functions as well then both functions will be represented. For example, mapping the “A” key to a controller button will result in the button press as well as the letter “A” being typed in when the key is pressed. In addition, there are special keys that correspond to special ECS keys. These special keys are as follows:

Tab
ECS “ESC” key

Arrow keys (four standalone)
ECS arrow keys

EITHER Shift
ECS “SHIFT” key

EITHER Ctrl
ECS “CTL” key

MAIN Enter
ECS “RTN”

Note that a 101-key keyboard is REQUIRED for ECS support since only the four standalone arrow keys are mapped to ECS arrow keys. This is so that the normal numeric keypad can be used for controller support. Also, since the PC <Esc> key is used to exit to the main menu screen, the ECS <Esc> key is mapped to the PC <Tab> key.

ECS Cassette Support

IntvWin supports loading and saving ECS Basic programs through an emulated cassette interface. When loading a program, IntvWin extracts the four-character ECS program name from ECS memory and looks for a file on your hard drive with the same name. For example, if the program is “LIFE”, IntvWin will look for a file called “LIFE” and attempt to load it. If no such file is found, it will report to the ECS that it wasn’t found, just as if it wasn’t found on a cassette tape.

When saving an ECS Basic program to cassette, IntvWin scans the data written to the cassette port and extracts the four-character program name. It then creates a file of the same name and then writes ALL data to that file that the ECS would have written to the cassette data port (this includes the program name).

Since IntvWin directly maps MS-DOS file names directly to the ECS Basic program name, it is important to choose names that are compatible with standard MS-DOS filename.ext filenames. For example, names like “LIFE” and “PROG” are okay, but names like “ALD*” and “8.1.” (two periods) would cause an error and might even crash the emulator.

Emulator slowdown (emulation of actual Intellivision speeds) is temporarily turned off during cassette loading and saving.

ECS Printer Support

IntvWin supports emulation of the ECS printer port (which, in actuality, is also accessed through the cassette port, but with a different destination code for the port control register). This allows ECS Basic programs to be printed to a standard text file. When printing a program, IntvWin prompts you for a destination file name and saves all printer output to that file. Every time you use the ECS printer, you are prompted for a file name. If you abort typing in a file name, the printout is printed by default to INTVWIN.PRN.

Emulator slowdown (emulation of actual Intellivision speeds) is temporarily turned off while printing to the ECS printer.

Importing a Text-File ECS Basic Program

Pressing the F7 key pops up a window where you can enter the name of a text file containing an ECS basic program. If you enter a valid file name, IntvWin will open it and enter the file into the emulated ECS just as if you were typing it yourself. It is important that the file only contain, therefore, characters that can be entered using a real ECS keyboard (e.g. no ampersands, “&”) and that the file contain the text EXACTLY as it would be entered (no annotated remarks).

Slowing Down the Emulator For Faster PC’s

At the time INTVWIN was written, many people were still using computers with i486 and slower Pentium processors. The assembly implementation was absolutely necessary to achieve a decent emulation speed. Since then, faster Pentium and Pentium Pro processors have become affordable, which presents the problem of games that run far faster on the emulator than on the original Intellivision. To address this problem, the preferences dialog contains a feature that can be used to limit the emulator to display a certain number of frames per second. For example, standard NTSC Intellivision’s display at 60 fps, so selecting “Set frames per second” from the Preferences popup menu and entering “60” should limit the emulator to the standard NTSC Atari speed. In addition, this feature can be used to make certain games either easier or harder by slowing them down or allowing them to be played faster.

4 Development Tools

In addition to the emulation engine, INTVWIN includes features designed to assist developers of Intellivision programs and other Intellivision emulators. It contains dual integrated debuggers that can be run in conjunction with any Intellivision Master Component, ECS, or Keyboard Component program by either using the “DEBUG” command line parameter or using the “Use debugger” option from the popup menu. It has a somewhat similar look and feel to Borland’s Turbo Debugger, but with only those features that are basic to program debugging in general and specific to the Intellivision:

· Display of program code in a code window which can be navigated using the cursor keys

· Display of all register contents as well as flag bits

· Display of the contents of RAM addresses

· Displays the STIC object locations

· Ability to execute unhindered, trace into, trace over, and execute until specific instructions or specific scan lines

· Online command reference

· Ability to change memory contents in Master Component and Keyboard Component RAM

· Ability to change a register’s contents

· Ability to save Master Component or Keyboard Component memory to disk

· Can break on a symbolic algebraic equation

When you start the debugger, two windows always display, one for the CP1600 CPU in the Master Component and one for the 6502 CPU in the Keyboard Component. If you are not performing Keyboard Component debugging, you can ignore this window.

A list of debugger functions follows:

Scroll bar
Navigate the code window

Mem
Enter one or more bytes of data into the CPU’s address range

Go
Execute the code unhindered until <Esc> is pressed

Here
Run to here—execute until the instruction at the top of the code window

Line
Run until a specific scan line

Reg
Change a register’s contents

Step
Step over—execute until next instruction

Trace
Execute current instruction only

Exp
Enter breakpoint expression

Save
Save memory area to disk

PC
Move the highlight to the instruction pointed to by the Program Counter

“Arrow”
Move the highlight to 0000h

Exp Ref
Display break expression reference window

Pos
Toggles display of the current graphics object positions

Debugger Layout

The largest window, in the upper left corner of the screen, displays the assembly code in the game program. A yellow highlight bar will be positioned on the next instruction to execute and the code window can be navigated using the cursor keys. To the right of the code window is an area that displays the contents of the flag register, and right below that is an area that displays the contents of all the CPU registers in hexadecimal format. Farther down, the graphics object positions are displayed in the CP1600 debugger window.

At the bottom of the debugger screen is a scrollable data window that displays the contents of the RAM area.

Entering one or more bytes (or words) of data

Clicking the “Mem” button brings up a pop-up window that allows you to enter a target address and one or more bytes of data. The format of the entry should be a hexadecimal address, and equal sign, and one or more hexadecimal bytes, separated by spaces. If a data entry is invalid, that address in the list is skipped. Also, the debugger does not have the ability to instantly reflect changed to hardware registers. Pressing <Esc> or closing the input window at any time aborts the data entry.

Examples

1004=00 4 34 AE D3 2F
(Enters these six bytes into 1004h to 1009h

143F=56 – 4E 33
(Enters 56h, 4Eh, and 33h into 143Fh, 1441h, and 1442h

Changing a CPU register’s contents

Clicking the “Reg” button opens a pop-up window that asks for a CPU (CP1600 or 6502) register and value to be entered. The format should be the register name, an equal sign, and a hexadecimal value to be entered.

Examples

PC=13F3h
(Changes the 6502 program counter to 13F3h

A=3
(Changes the 6502 accumulator to 03h

P=E2
(Changes the 6502 flags register to E2h

X=26
(Changes the 6502 X register to 26h

S=9A
(Changes the 6502 stack register to 9Ah

Y=71
(Changes the 6502 Y register to 71h

R0=13F3h
(Changes CP1600 register 0 13F3h

R5=3
(Changes CP1600 register 5 to 0003h

R7=34E2
(Changes CP1600 register 7 to 34E2h

SW=6
(Changes the CP1600 status word to 6h

Note that data entries are kept within legal ranges.

Entering a CP1600 instruction

Clicking the “Asm” button (CP1600 debugger only) opens a pop-up window in which you can enter an instruction by name. The instruction will be entered into the memory position at the top of the disassembly window. If an invalid instruction is entered, an error message will be displayed. In addition, the previous memory location will be checked for an SDBD instruction, and the entered instruction will be adapted, if applicable. If an entered instruction requires more than ten bits of RAM in any given word location, a warning will be issued.

Examples

ADD@
R5,R6

PSHR
R0

PULR
R3

J
13F4

Instructions are case-insensitive. Also, ALL numbers will be interpreted as hexadecimal; there is currently no way to enter a number as a decimal, octal, or binary value. You should not add any prefixes or suffixes (e.g. “h”, “$”, or “0x”) to denote hexadecimal values.

Saving to Disk

Since you can use the “Mem” button to interactively change a game file as it runs, the “Save” button allows you to permanently save the final ROM dump to disk. Clicking ‘Save” brings up a pop-up window that lets you enter a path and filename at which to save the file. Invalid filenames will be ignored.

Breaking On an Equation/Expression

This is an advanced feature for which a really fast PC is recommended (400MHz or greater) and is accessed via the “Exp” button. It allows you to enter an algebraic equation, which, when true, will cause a breakpoint. For example, you might want to break if a register contains a certain value, if the contents of a memory address is greater than the contents of a different memory address, and so on. The possibilities are nearly limitless. For example the expression:

(P0=5) || ([8D]=4)

will cause a breakpoint if the horizontal position of player 0 is 5 or if the contents of memory location 008Dh is equal to 4.

The syntax is somewhat similar to C, and should be somewhat familiar. Expressions can use equalities or inequalities, multiple levels of nesting, boolean operators, bitwise operators, and algebraic operators. As long as the entire expression can evaluate to a boolean (true or false) value, anything goes. Multiple nesting with parentheses is allowed. Integers are decimal by default, but are interpreted as hexadecimal if followed by an “h” (e.g. 3Dh). However, address locations (in square brackets) are always interpreted as hexadecimal. All expressions are case-insensitive. The following variables are available (also shown in the online help):

S1X to S8X
Sprite 1, 2, 3, 4, 5, 6, 7, or 8 horizontal position

S1Y to S8Y
Sprite 1, 2, 3, 4, 5, 6, 7, or 8 vertical position

R0 to R7
Contents of CP1600 register R0, R1, R2, R3, R4, R5, R6, or R7

SW
Contents of CP1600 status word

A
Contents of 6502 accumulator

X
Contents of 6502 X register

Y
Contents of 6502 Y register

P
Contents of 6502 P register

S
Contents of 6502 S register

PC
Contents of 6502 PC register

[addr]
Contents of hexadecimal address

The following operators are available (also shown in the online help):

+
Integer addition

-
Integer subtraction/negation

*
Integer multiplication

/
Integer division

%
Integer modulo

&&
Boolean AND

||
Boolean OR

^^
Boolean XOR

! or ~
Boolean NOT

&
Bitwise AND

|
Bitwise OR

^
Bitwise XOR

= or ==
Equality

<> or !=
Inequality

<
Unsigned less than

>
Unsigned greater than

<=
Unsigned less than or equal to

>=
Unsigned greater than or equal to

(…)
Parentheses

Please be aware that running a game will slow to a crawl when using this feature, since the entire expression has to be evaluated on every CPU instruction. The more complex an expression is, the longer it takes to evaluate. But for those who are developing a game and really need some help tracking down a problem, this could be a very big help. Entering a blank expression will turn the feature back off and restore emulation speed to normal.

The Disassembler

INTVWIN also includes a disassembler for building CP1600 assembler listings of game files. It is invoked with the Disassemble menu command, and will prompt you for a file name in which to save the listing.

5 Troubleshooting

None of my games run

Make SURE you have the Intellivision Lives! CD and have placed IntvWin in the same folder as the .BIN files that come with the emulator. You will have to install the emulator from the Intellivision Lives! CD onto your hard drive first. IntvWin requires the Intellivision Lives! emulator to run, since IntvWin contains none of the copyrighted information that is needed for any Intellivision emulator to function. My recommendation: go and buy Intellivision Lives! first. You won’t be disappointed. I had my emulator already running before I bought it, and I was still impressed. If you’re into classic gaming, you’ll have to admit that it’s one of the coolest things out there.

My games run, but I don’t hear any voice for Intellivoice games

While IntvWin fully supports the Intellivoice, it does NOT contain the copyrighted ROM code that the Intellivoice contains. Without this ROM your Intellivoice games will run, but you won’t hear any voice since the unit isn’t being properly emulated. By default IntvWin expects this to be a 2k (2048-byte) file called IVOICE.BIN. I understand that this file does not come with the Intellivision Lives! CD but as I don’t own the rights to the code, I can’t distribute it. Perhaps it will be included with the upcoming Intellivision Rocks! CD. I simply don’t know and I can’t help anyone who might ask me for the file (i.e. ALL such requests will be ignored).

The emulator runs VERY slowly

The first thing to check is your computer’s speed. If your computer is slower than a Pentium-166 or so, expect slow operation. You can find out how fast your PC is emulating the Intellivision by running a game with a timer (such as a sports game) and timing how long it takes to count to a certain point. Remember, though, to set the frames-per-second value to 0 to allow the emulator to run as fast as possible before performing benchmarks.

If all else fails, check if your computer has a “turbo” feature, usually a button on the case. The effect of the turbo being off should be very noticeable, since ALL software should run slowly. Make sure the turbo is ON, usually indicated by an LED nearby.

The emulator runs more slowly when I use joysticks than when I use the keyboard

It is normal to experience a 10 percent or so degradation of emulation speed when using joysticks with the emulator. This is due to the method required to read analog joysticks. They can only be read by initializing the joystick port and waiting until a certain bit flips or until a time limit has been reached. This occasional waiting loop causes the loss in emulation speed.

The emulator runs much slower than the DOS version

Unfortunately, Windows applications must use operating system calls (such as DirectX) to access the video and sound cards. This means that the emulator must call layers of software instead of accessing the hardware directly. While this makes it more compatible with different video and sound cards, it means much more processor overhead. The DOS version will ALWAYS perform better than the Windows version; if you need more speed, please look into INTVDOS.

The emulator runs, but there is no sound

Sometimes simple solutions are the best; make sure that sound is enabled with the “Toggle sound” option, and check to see that your speakers are connected and on if they have a power switch. If your speakers support optional external power supplies for additional amplification, you might have to set the power switch to “Off” if you are not using any additional power supply for them. Try testing sound with another program to make sure your sound card and speakers are set up properly.

If your sound card has mixer software or you are running in Windows 95, check your mixer settings to make sure they are correct. For DOS users, you should have mixer software that came with your card, or they might be available from your manufacturer. For example, my Sound Blaster 16 SCSI-2 has a program called SB16MIX.EXE, a DOS TSR that lets me set the individual mixer settings. Windows users should have similar software, and Windows 95 users can try double-clicking on the little speaker icon in the system tray at the bottom right of the screen. You should make sure that the digital and FM outputs are the same value (they are usually called “wave” and “midi”) and that the master volume is not zero or a small value.

I have sometimes had problems after running other software that would cause the sound card to become inaccessible afterwards. Turning off your computer and turning it back on will reset the sound card and might help matters.

The emulator runs too fast; games are unplayable

From the popup menu, select the “Set frames per second” option. You will be asked to enter a number of frames per second at which the emulator will run. This causes the emulator to limit its speed so as not to exceed the frame rate that you specify. Entering zero will cause the emulator to run as fast as possible. For standard NTSC Intellivision’s you should enter 60, which should limit the emulator to running at 60 frames per second.

If you had already done this and the emulator still runs too fast, your video card might not be correctly reporting vertical refresh rates to the emulator. Try smaller values, like 45 or 30.

The menu doesn’t show any games to run

Make sure you are running INTVWIN from the right directory. If the game files are in a different directory than the emulator, you have to specify the alternate directory either from the command line (e.g. INTVWIN G:\GAMES) or make sure you have the right directory set up in the preferences dialog. Also, make sure that all games have extensions of .BIN, the only extension the menu displays.

The emulator works on one computer, but one of the above problems arises when I copy it to another machine

Different machines have different hardware and software configurations. Make sure there is adequate memory, that the sound setup is correct, and either disable keyboard support in the emulator or recalibrate the joystick. Follow the troubleshooting help for the given problem to attempt to solve it.

When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately

There are three possibilities: (1) the game isn’t supported by the emulator; (2) the game is a different type than the one you have specified, or (3) the game is a bad ROM dump. If the game isn’t supported, there really is nothing you can do; perhaps a future version might support it. If you have generated the game profile and are trying to run the game by pressing the Enter key, perhaps the game is a different type and needs to be added to the known game profile file. If you can establish the proper game type, you can change its profile settings from the “Profile settings…” dialog. If nothing works, perhaps it is a bad copy of the game.

One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen

You might have a problem with your joystick. Make sure it is fully plugged in, and test it with some other software. If it works fine with other software, check the joystick button mappings by selecting “Configure controllers” from the main menu and selecting the joystick interface to make sure that you don’t have more than one thing mapped to the same joystick button. If the joystick has problems with other software as well, try remapping the buttons to compensate. In this case, you might consider buying either a new joystick or a new game port. You might be able to tell where the problem is by trying a different joystick to see if the problem persists.

I get an error message saying that a file is missing

INTVWIN is designed to abort gracefully if a file is missing or if there are no game files in the target directory. The message should tell you what the emulator is looking for and the directory in which it is looking. If this is not the directory you expect INTVWIN to use, check to see that you are in the right directory and that any Windows shortcuts are set up properly. If the directory is correct, check to make sure that the desired file(s) are there.

My game controller doesn’t work or isn’t detected

When I connect my N64 controller using the Adaptoid USB adapter, for some reason controllers connected to my joystick port stop working. This happens throughout Windows, not just when using INTVWIN. If you have a USB controller connected in addition to standard joystick controllers, try disconnecting the USB controller.

I want to start a network game using Kaillera. What do I do?

Clicking on the network play button on the main toolbar will open up the Kaillera connection screen. From here you must enter a unique name that represents your client (e.g. jdpcae). Those with whom you wish to play must also do the same on their computers. Then, as a group, you all have to join the SAME Kaillera server from the server list. If you are running your own server (e.g. on a LAN), you can click the “Enter IP” button to enter the LAN IP of the local Kaillera server. Once that is done, you all must agree on who will start the game. Kaillera games work by having one person “create” a net-play game and having all others join that game. One of you creates the game and chooses the game that is to be played. The others will see that game show up on their active games list and merely have to choose to join it. ALL PLAYERS IN QUESTION MUST ALREADY HAVE THE GAME THEY WISH TO PLAY. Neither the emulator nor the Kaillera client distribute a game to players who don’t have it, so they must all be legal owners of their respective games. (Actually Kaillera handles all of the game setup mechanics; the emulator itself does no more than supply a textual list of games the “creator” has available). Once all players have joined the game, they can start the net-play game. This instructs all players’ emulators to begin running their respective copies of the game, and Kaillera keeps them all synchronized. Play takes place as normal, with a player able to quit by pressing Esc to stop emulation. Players can completely exit the Kaillera net-play interface by closing the Kaillera pop-up windows after stopping emulation and “leaving” the net-play game. For more information you should visit the official Kaillera homepage, which as of this writing is http://www.kaillera.com.

6 Acknowledgements

First and foremost, thanks go to the Blue Sky Rangers for developing the Intellivision software! Also for releasing the Intellvision Lives! and Intellivision Rocks! CDs, two of the coolest things I’ve seen on the emulator scene.

Joe Zbiciak and Frank Palazzolo: for reverse engineering the SP0256 and SPB640 chips used in the Intellivoice. Intellivoice support would have been impossible without their help.

Carl Muller: for developing the first Intellivision emulator, the one that’s on the Intellivision Lives! CD.

William Moeller: for writing De Re Intellivision, which proved to be invaluable.

Everyone who has contributed to the Intellivision FAQ: technical information on the Intellivision has been VERY hard to find, making that which was available all the more precious.

Since much of IntvDOS is based on PCAE, the PCAE acknowledgements section follows.

Over the past few years while I have been developing PCAE, I have been lucky enough to receive a lot of help from some gracious people. This should in no way be considered an exhaustive list; I’ve gotten so much feedback over the past three years from so many people that I could never list everyone—my email folder simply isn’t that large, so if you aren’t included here, please don’t take any offense. I am grateful for all the assistance that has come my way.

Those who helped (not necessarily in any real order)

Matt Conte: First and foremost, for giving PCAE a home! Also for spreading the word, doing lots of beta testing, getting me info and tools I needed, fielding a lot of the email, and generally being really helpful.

Kevin Horton: Helped me with a lot of technical details of the 2600 especially bankswitching issues and Pitfall II deciphering. Also made sure I knew about every kind of bankswiching game he could get his hands on.

Norbert Juffa: Wrote the millisecond timer used in the fps limiting code.

Dan Melton: Wrote the keyboard interrupt service routine.

Ron Fries: Wrote the TIA sound routines and sent them to me.

Dan Boris: Introduced me to Ron Fries’ sound routines.

Dave W. (Dave’s Video Game Classics, now Vintage Gaming Network): Did lots of testing of PCAE, and supplied a whole bunch of good suggestions to make it better.

Jim Leonard: Provided lots more web space for PCAE, as well as did some very important testing of the final version. Also converted the documentation and schematics to HTML.

Bradford W. Mott and Keith Wilkins: For making available the source code to Stella, another really great 2600 emulator. This has not been an isolated project, and I’d be lying if I said that Stella wasn’t helpful. I certainly hope that PCAE’s source has been equally helpful.

Eckhard Stolberg: Provided me with a better PAL palette and provided additional information on the Cosmic Ark starfield bug.

John Saeger (author of Z26): Z26 has many of the same sound routines as PCAE, but I found that Z26 actually uses them properly—this made possible the smoother “click-less” sound in the current version.

Vojtech Pavlik (author of Linux joystick driver): for providing specs on SideWinder packets and how to read them.

Eric March: TESTING! TESTING! TESTING! One of the key reasons why PCAE is as good as it is; the list of bugs he identified is positively embarrassing.

Countless others: Many of the features PCAE has today came from people who emailed me with their suggestions. This document is a direct result of all the feedback I’ve gotten, and is my attempt at making things clearer for everyone.

7 Disclaimer

INTVWIN emulates a commercial game system for which copyrighted software was developed and still exists. The author of INTVWIN hereby forbids anyone to distribute INTVWIN in conjunction with any other copyrighted software. In addition, users of INTVWIN are specifically forbidden from using it in any way with copyrighted software for which they are not in legal ownership. INTVWIN should IN NO WAY be regarded as condonation of, or an excuse to commit, software piracy, and the author will not be held responsible for the actions of others.

In addition to the above, INTVWIN is covered by the GNU General Public License, which can be found in file “COPYING”.

Source code is available at http://pcae.vg-network.com/intv/intvdos.html.

